| Preface |
|
xvii | |
| PART I |
|
|
Meet the Finite Element Method |
|
|
3 | (14) |
|
What Is the Finite Element Method? |
|
|
3 | (2) |
|
How the Finite Element Method Works |
|
|
5 | (3) |
|
A Brief History of the Method |
|
|
8 | (3) |
|
|
|
11 | (2) |
|
Commercial Finite Element Software |
|
|
13 | (1) |
|
The Future of the Finite Element Method |
|
|
14 | (3) |
|
|
|
15 | (2) |
|
The Direct Approach: A Physical Interpretation |
|
|
17 | (57) |
|
|
|
17 | (1) |
|
Defining Elements and Their Properties |
|
|
18 | (22) |
|
|
|
18 | (3) |
|
|
|
21 | (4) |
|
Simple Elements from Structural Mechanics |
|
|
25 | (12) |
|
Coordinate Transformations |
|
|
37 | (3) |
|
|
|
40 | (16) |
|
Assembly Rules Derived from an Example |
|
|
40 | (6) |
|
General Assembly Procedure |
|
|
46 | (1) |
|
Features of the Assembled Matrix |
|
|
47 | (1) |
|
Introducing Boundary Conditions |
|
|
48 | (8) |
|
|
|
56 | (7) |
|
|
|
57 | (1) |
|
|
|
58 | (2) |
|
|
|
60 | (1) |
|
Nonlinear Equation Solvers |
|
|
60 | (3) |
|
|
|
63 | (11) |
|
|
|
63 | (1) |
|
|
|
64 | (10) |
|
The Mathematical Approach: A Variational Interpretation |
|
|
74 | (39) |
|
|
|
74 | (1) |
|
|
|
75 | (4) |
|
|
|
75 | (1) |
|
|
|
76 | (2) |
|
Classification of Differential Equations |
|
|
78 | (1) |
|
Some Methods for Solving Continuum Problems |
|
|
79 | (6) |
|
|
|
79 | (1) |
|
|
|
80 | (1) |
|
|
|
81 | (4) |
|
The Finite Element Method |
|
|
85 | (23) |
|
Relation to the Ritz Method |
|
|
85 | (1) |
|
Generalizing the Definition of an Element |
|
|
86 | (1) |
|
Example of a Piecewise Approximation |
|
|
87 | (4) |
|
Element Equations from a Variational Principle |
|
|
91 | (2) |
|
Requirements for Interpolation Functions |
|
|
93 | (6) |
|
|
|
99 | (3) |
|
Example of a Complete Finite Element Solution |
|
|
102 | (6) |
|
|
|
108 | (5) |
|
|
|
108 | (1) |
|
|
|
109 | (4) |
|
The Mathematical Approach: A Generalized Interpretation |
|
|
113 | (24) |
|
|
|
113 | (1) |
|
Deriving Finite Element Equations from the Method of Weighted Residuals |
|
|
114 | (17) |
|
Example: One-Dimensional Poisson Equation |
|
|
119 | (6) |
|
Example: Two-Dimensional Heat Conduction |
|
|
125 | (4) |
|
Example: Time-Dependent Heat Conduction |
|
|
129 | (2) |
|
|
|
131 | (6) |
|
|
|
131 | (1) |
|
|
|
132 | (5) |
|
Elements and Interpolation Functions |
|
|
137 | (86) |
|
|
|
138 | (1) |
|
|
|
139 | (5) |
|
Terminology and Preliminary Considerations |
|
|
144 | (2) |
|
|
|
144 | (1) |
|
|
|
144 | (1) |
|
Interpolation Functions-Polynomials |
|
|
144 | (2) |
|
Generalized Coordinates and the Order of the Polynomial |
|
|
146 | (5) |
|
|
|
146 | (1) |
|
|
|
147 | (2) |
|
Deriving Interpolation Functions |
|
|
149 | (2) |
|
|
|
151 | (10) |
|
Natural Coordinates in One Dimension |
|
|
152 | (1) |
|
Natural Coordinates in Two Dimensions |
|
|
153 | (4) |
|
Natural Coordinates in Three Dimensions |
|
|
157 | (4) |
|
Interpolation Concepts in One Dimension |
|
|
161 | (5) |
|
|
|
161 | (2) |
|
|
|
163 | (3) |
|
Internal Nodes--Condensation/Substructuring |
|
|
166 | (4) |
|
|
|
170 | (14) |
|
|
|
170 | (8) |
|
|
|
178 | (6) |
|
Three-Dimensional Elements |
|
|
184 | (5) |
|
|
|
184 | (5) |
|
|
|
189 | (1) |
|
Isoparametric Elements for C0 Problems |
|
|
189 | (8) |
|
Coordinate Transformation |
|
|
190 | (3) |
|
Evaluation of Element Matrices |
|
|
193 | (3) |
|
Example of Isoparametric Element Matrix Evaluation |
|
|
196 | (1) |
|
|
|
197 | (13) |
|
|
|
199 | (3) |
|
|
|
202 | (3) |
|
Numerical Example for Element Matrix Evaluation |
|
|
205 | (5) |
|
|
|
210 | (13) |
|
|
|
211 | (2) |
|
|
|
213 | (10) |
| PART II |
|
|
|
|
223 | (65) |
|
|
|
224 | (1) |
|
General Formulation for Three-Dimensional Problems |
|
|
224 | (14) |
|
|
|
224 | (2) |
|
|
|
226 | (6) |
|
|
|
232 | (4) |
|
|
|
236 | (2) |
|
Application to Plane Stress and Plane Strain |
|
|
238 | (8) |
|
Displacement Model for a Triangular Element |
|
|
238 | (2) |
|
Element Stiffness Matrix for a Triangle |
|
|
240 | (3) |
|
Element Force Vectors for a Triangle |
|
|
243 | (3) |
|
Application to Axisymmetric Stress Analysis |
|
|
246 | (8) |
|
Displacement Model for Triangular Toroid |
|
|
247 | (1) |
|
Element Stiffness Matrix for Triangular Toroid |
|
|
247 | (3) |
|
Element Force Vectors for Triangular Toroid |
|
|
250 | (4) |
|
Application to Plate-Bending Problems |
|
|
254 | (8) |
|
Requirements for the Displacement Interpolation Functions |
|
|
257 | (1) |
|
Rectangular Plate-Bending Elements |
|
|
258 | (4) |
|
Three-Dimensional Problems |
|
|
262 | (2) |
|
|
|
262 | (1) |
|
Formulation for the Linear Tetrahedral Element |
|
|
262 | (1) |
|
|
|
263 | (1) |
|
Introduction to Structural Dynamics |
|
|
264 | (14) |
|
|
|
264 | (3) |
|
|
|
267 | (2) |
|
Finding Transient Motion via Mode Superposition |
|
|
269 | (3) |
|
Finding Transient Motion via Recurrence Relations |
|
|
272 | (6) |
|
|
|
278 | (10) |
|
|
|
279 | (2) |
|
|
|
281 | (7) |
|
|
|
288 | (60) |
|
|
|
289 | (1) |
|
|
|
289 | (14) |
|
|
|
289 | (1) |
|
|
|
290 | (3) |
|
|
|
293 | (1) |
|
|
|
294 | (3) |
|
Element Equations in Two Dimensions |
|
|
297 | (6) |
|
|
|
303 | (8) |
|
|
|
304 | (1) |
|
|
|
305 | (1) |
|
|
|
306 | (1) |
|
|
|
307 | (2) |
|
|
|
309 | (2) |
|
|
|
311 | (9) |
|
General Time-Dependent Field Problems |
|
|
311 | (5) |
|
|
|
316 | (2) |
|
Element Equations in One Space Dimension |
|
|
318 | (2) |
|
Solving the Discretized Time-Dependent Equations |
|
|
320 | (15) |
|
Solution Methods for First-Order Equations |
|
|
321 | (1) |
|
Finding Transient Response via Mode Superposition |
|
|
321 | (3) |
|
Finding Transient Response via Recurrence Relations |
|
|
324 | (3) |
|
Oscillation and Stability of Transient Response |
|
|
327 | (3) |
|
|
|
330 | (2) |
|
|
|
332 | (3) |
|
|
|
335 | (13) |
|
|
|
335 | (2) |
|
|
|
337 | (11) |
|
|
|
348 | (74) |
|
|
|
349 | (1) |
|
|
|
349 | (30) |
|
|
|
349 | (2) |
|
Finite Element Formulation |
|
|
351 | (5) |
|
|
|
356 | (9) |
|
Linear Steady-State and Transient Solutions |
|
|
365 | (6) |
|
Nonlinear Steady-State Solutions |
|
|
371 | (4) |
|
Nonlinear Transient Solutions |
|
|
375 | (4) |
|
Conduction with Surface Radiation |
|
|
379 | (11) |
|
|
|
379 | (2) |
|
Element Equations with Radiation |
|
|
381 | (3) |
|
|
|
384 | (2) |
|
|
|
386 | (4) |
|
Convective-Diffusion Equation |
|
|
390 | (8) |
|
|
|
391 | (1) |
|
Finite Element Formulation |
|
|
391 | (2) |
|
|
|
393 | (4) |
|
Two-Dimensional Solutions |
|
|
397 | (1) |
|
Free and Forced Convection |
|
|
398 | (5) |
|
|
|
398 | (1) |
|
Finite Element Formulation |
|
|
399 | (2) |
|
|
|
401 | (1) |
|
|
|
402 | (1) |
|
|
|
403 | (1) |
|
|
|
403 | (19) |
|
|
|
406 | (4) |
|
|
|
410 | (12) |
|
|
|
422 | (73) |
|
|
|
422 | (1) |
|
Inviscid Incompressible Flow |
|
|
423 | (11) |
|
|
|
424 | (1) |
|
Finite Element Formulation |
|
|
425 | (3) |
|
Velocity Component Smoothing |
|
|
428 | (1) |
|
Example with Unstructured Mesh |
|
|
429 | (4) |
|
|
|
433 | (1) |
|
Viscous Incompressible Flow without Inertia |
|
|
434 | (7) |
|
|
|
434 | (2) |
|
Stream Function Formulation |
|
|
436 | (1) |
|
Velocity and Pressure Formulation |
|
|
437 | (4) |
|
Viscous Incompressible Flow with Inertia |
|
|
441 | (18) |
|
Mixed Velocity and Pressure Formulation |
|
|
442 | (6) |
|
Penalty Function Formulation |
|
|
448 | (3) |
|
Equal-Order Velocity and Pressure Formulation |
|
|
451 | (8) |
|
|
|
459 | (20) |
|
|
|
460 | (1) |
|
Low-Speed Flow with Variable Density |
|
|
461 | (6) |
|
|
|
467 | (12) |
|
|
|
479 | (16) |
|
|
|
480 | (6) |
|
|
|
486 | (9) |
|
Boundary Conditions, Mesh Generation, and Other Practical Considerations |
|
|
495 | (75) |
|
|
|
496 | (1) |
|
|
|
496 | (2) |
|
|
|
498 | (4) |
|
|
|
502 | (15) |
|
Definition of Types of Symmetry |
|
|
503 | (7) |
|
|
|
510 | (2) |
|
A Complex Loading Example: Two Axes of Symmetry |
|
|
512 | (1) |
|
Axisymmetry and Rotational Symmetry |
|
|
512 | (1) |
|
|
|
513 | (3) |
|
|
|
516 | (1) |
|
|
|
517 | (2) |
|
|
|
519 | (22) |
|
|
|
520 | (1) |
|
|
|
521 | (5) |
|
Mesh Topology Cleanup and Mesh Smoothing |
|
|
526 | (3) |
|
|
|
529 | (2) |
|
|
|
531 | (4) |
|
|
|
535 | (2) |
|
|
|
537 | (4) |
|
Lumped Mass versus Consistent Mass |
|
|
541 | (2) |
|
|
|
543 | (3) |
|
|
|
546 | (3) |
|
Crankshaft and Flywheel Analysis |
|
|
549 | (2) |
|
|
|
551 | (7) |
|
An Automotive Brake Primer |
|
|
552 | (1) |
|
Rotor Analysis Using Rotational Symmetry |
|
|
553 | (3) |
|
Rotor Coning Analysis Using Axisymmetry |
|
|
556 | (1) |
|
|
|
557 | (1) |
|
|
|
558 | (1) |
|
|
|
558 | (12) |
|
|
|
559 | (6) |
|
|
|
565 | (5) |
|
Finite Elements in Design |
|
|
570 | (66) |
|
|
|
571 | (1) |
|
|
|
571 | (11) |
|
|
|
572 | (2) |
|
Practical Aspects of Numerical Optimization |
|
|
574 | (3) |
|
|
|
577 | (4) |
|
Software Packages for Optimal Design |
|
|
581 | (1) |
|
Finite Element-Based Optimal Design |
|
|
582 | (12) |
|
|
|
583 | (3) |
|
|
|
586 | (3) |
|
|
|
589 | (3) |
|
|
|
592 | (1) |
|
Multidisciplinary Design Optimization |
|
|
593 | (1) |
|
Design Sensitivity Analysis |
|
|
594 | (12) |
|
Finite Difference Approximations |
|
|
594 | (1) |
|
Analytical Methods for Design Sensitivity Analysis |
|
|
595 | (5) |
|
Design Sensitivities for Eigenproblems |
|
|
600 | (5) |
|
|
|
605 | (1) |
|
Other Advancements in Design Sensitivity Analysis |
|
|
606 | (1) |
|
Examples of Design Sensitivity Analysis |
|
|
606 | (20) |
|
Numerical Example: Steady-State Equilibrium Analysis |
|
|
606 | (5) |
|
Numerical Example: Eigenvalue and Eigenvector Analysis |
|
|
611 | (4) |
|
Sensitivity Analysis for Steady-State Conduction in a Solid |
|
|
615 | (8) |
|
Numerical Example for Steady-State Conduction in a Solid |
|
|
623 | (3) |
|
Case Study: Finite Element-Based Design |
|
|
626 | (2) |
|
|
|
628 | (8) |
|
|
|
628 | (4) |
|
|
|
632 | (4) |
| Appendix A Matrices |
|
636 | (12) |
|
|
|
637 | (1) |
|
A.2 Special Types of Square Matrices |
|
|
637 | (1) |
|
|
|
638 | (2) |
|
A.4 Special Matrix Products |
|
|
640 | (1) |
|
A.4.1 Product of a Square Matrix and a Column Matrix |
|
|
640 | (1) |
|
A.4.2 Product of a Row Matrix and a Square Matrix |
|
|
640 | (1) |
|
A.4.3 Product of a Row Matrix and a Column Matrix |
|
|
641 | (1) |
|
A.4.4 Product of the Identity Matrix and Any Other Matrix |
|
|
641 | (1) |
|
|
|
641 | (1) |
|
|
|
641 | (2) |
|
|
|
643 | (1) |
|
|
|
643 | (2) |
|
A.9 The Calculus of Matrices |
|
|
645 | (1) |
|
A.9.1 Differentiation of a Matrix |
|
|
645 | (1) |
|
A.9.2 Integration of a Matrix |
|
|
645 | (1) |
|
A.9.3 Differentiation of a Quadratic Functional |
|
|
645 | (1) |
|
|
|
646 | (2) |
| Appendix B Variational Calculus |
|
648 | (9) |
|
|
|
648 | (1) |
|
B.2 Calculus--The Minima of a Function |
|
|
648 | (2) |
|
|
|
648 | (1) |
|
B.2.2 Functions of One Variable |
|
|
649 | (1) |
|
B.2.3 Functions of Two or More Variables |
|
|
650 | (1) |
|
B.3 Variational Calculus--The Minima of Functionals |
|
|
650 | (7) |
|
|
|
650 | (1) |
|
B.3.2 Functionals of One Variable |
|
|
651 | (4) |
|
B.3.3 More General Functionals |
|
|
655 | (1) |
|
|
|
656 | (1) |
| Appendix C Basic Equations from Linear Elasticity Theory |
|
657 | (17) |
|
|
|
657 | (1) |
|
|
|
658 | (1) |
|
|
|
658 | (1) |
|
C.4 Generalized Hooke's Law (Constitutive Equations) |
|
|
659 | (3) |
|
C.5 Static Equilibrium Equations |
|
|
662 | (1) |
|
C.6 Compatibility Conditions |
|
|
663 | (1) |
|
C.7 Differential Equations for Displacements |
|
|
664 | (1) |
|
C.8 Minimum Potential Energy Principle |
|
|
665 | (2) |
|
C.9 Plane Strain and Plane Stress |
|
|
667 | (3) |
|
|
|
670 | (1) |
|
|
|
671 | (3) |
|
|
|
673 | (1) |
| Appendix D Basic Equations from Fluid Mechanics |
|
674 | (17) |
|
|
|
674 | (1) |
|
D.2 Definitions and Concepts |
|
|
675 | (2) |
|
|
|
677 | (6) |
|
D.3.1 Differential Continuity Equation |
|
|
678 | (1) |
|
D.3.2 Differential Momentum Equation (Navier-Stokes Equations) |
|
|
678 | (2) |
|
D.3.3 Thermal Energy Equation |
|
|
680 | (1) |
|
D.3.4 Conservative Form of Equations |
|
|
680 | (2) |
|
D.3.5 Supplementary Equations |
|
|
682 | (1) |
|
|
|
682 | (1) |
|
D.4 Stream Functions and Vorticity |
|
|
683 | (2) |
|
|
|
685 | (1) |
|
D.6 Viscous Incompressible Flow |
|
|
686 | (3) |
|
D.6.1 Primitive Variable Formulation |
|
|
686 | (1) |
|
D.6.2 Vorticity and Stream Function Formulation |
|
|
687 | (2) |
|
|
|
689 | (2) |
|
|
|
690 | (1) |
| Appendix E Basic Equations from Heat Transfer |
|
691 | (18) |
|
|
|
691 | (1) |
|
|
|
692 | (4) |
|
E.2.1 Heat Conduction Equation |
|
|
693 | (1) |
|
E.2.2 Boundary Conditions |
|
|
694 | (2) |
|
E.2.3 Nondimensional Parameters |
|
|
696 | (1) |
|
|
|
696 | (5) |
|
E.3.1 Convection Equations |
|
|
697 | (2) |
|
E.3.2 Boundary Conditions |
|
|
699 | (1) |
|
E.3.3 Nondimensional Parameters |
|
|
700 | (1) |
|
|
|
701 | (6) |
|
|
|
702 | (2) |
|
E.4.2 Radiation Exchange between Surfaces |
|
|
704 | (3) |
|
|
|
707 | (2) |
|
|
|
708 | (1) |
| Index |
|
709 | |